STRUCTURE OF RK-397, A NEW OXO PENTAENE ANTIBIOTIC

HIROYUKI KOSHINO, KIMIE KOBINATA, KIYOSHI ISONO[†] and HIROYUKI OSADA

The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan [†]Department of Marine Science, Tokai University, Orido, Shimizu, Shizuoka 424, Japan

(Received for publication June 25, 1993)

RK-397 is a new antibiotic produced by *Strepto-myces* sp. 87-397. The antibiotic showed antitumor, antifungal and antibacterial activities. The studies of taxonomy, fermentation, isolation, physico-chemical properties and biological activities are described in the preceding paper¹). In this paper, we report the structural determination of RK-397.

RK-397 is a yellow powder with mp 157~163°C (dec) and has the molecular formula $C_{35}H_{56}O_{10}$ which was determined by HRFAB-MS (m/z)637.3930, MH⁺). The UV spectrum exhibited characteristic absorption of the oxo pentaene chromophore, λ_{max} (in MeOH) 360 nm, and suggested that RK-397 belongs the oxo polyene macrolide group of antibiotics, such as mycoticins²⁾, roxaticin³⁾, roflamycoin⁴⁾ and dermostatins⁵⁾. The ¹H NMR spectrum (Table 1) showed the ten olefinic protons of the oxo pentaene moiety, as well as two protons of an isolated olefin. The ¹³C NMR and DEPT spectrum (Table 1) exhibited the signals of one carbonyl carbon, three methyl carbons, eight methylene carbons and twenty-three methine carbons which consist of twelve olefinic, nine oxygenated and two ordinary methine carbons. Two partial structures, C-1~C-12 and C-27~ C-35, were assigned by ¹H-¹H COSY and ¹³C-¹H COSY. The stereochemistry of the six double bonds was determined as all E from the large coupling constants (J=14.9 Hz for the pentaene)moiety and J=15.7 Hz for H-28 and H-29). The remaining portion (C-13~C-26) contains seven methylenes $(45 \sim 48 \text{ ppm})$ and seven oxygenated methines (65~69 ppm). These ${}^{13}C$ chemical shifts suggested that the presence of a skipped polyol for the C-13~C-26 portion^{6,7)}. Careful analyses of ¹H-¹H HOHAHA and HMBC⁸⁾ spectra in addition to ¹H-¹H COSY allowed full assignment of ¹H and ¹³C NMR signals. Further, the 2D ¹³C-¹H HOHAHA spectrum was measured and this data supported the assignment of the crowded proton signals for the skipped polyol portion (Table 2). In the HMBC spectrum summarized in Fig. 1, ${}^{1}H{-}^{13}C$ long range couplings from H-2, H-3 and H-31 to the carbonyl carbon (C-1 at 169.07 ppm) were observed. The chemical shift of the methine proton H-31 (4.78 ppm) indicated that this methine is acyloxy methine. Consequently, the planar structure of RK-397 (1) was determined to be the 32-membered macrolide depicted in Fig. 2.

Table 1. ¹³C (150 MHz) and ¹H NMR (600 MHz) data for RK-397 (1)^{a,b}.

No.	C	H°
1	169.07	
2	121.40	5.89 (d, 14.9)
3	146.84	7.30 (dd, 14.9, 11.7)
4	131.07	6.44 (dd, 14.9, 11.7)
5	142.84	6.70 (dd, 14.9, 11.3)
6	132.86	6.37 (dd, 14.9, 11.3)
7	139.30	6.51 (dd, 14.9, 10.9)
8	132.38	6.29 (dd, 14.9, 10.9)
9	137.12	6.40 (dd, 14.9, 10.9)
10	133.79	6.22 (dd, 14.9, 10.1)
11	134.19	5.85 (ddd, 14.9, 10.1, 5.3)
12	43.95	2.63 (m), 2.24 (ddd, 13.7, 10.1, 10.0)
13	69.35	3.96 (m)
14	46.92	1.68~1.59 (m)
15	67.53	3.82 (m)
16	48.03	1.70 (ddd, 13.7, 8.2, 4.8),
		1.38 (ddd, 13.7, 8.9, 4.4)
17	66.36	3.89 (m)
18	45.34	1.46 (ddd, 14.1, 9.6, 3.2),
		1.20 (ddd, 14.1, 10.1, 2.4)
19	65.09	4.07 (m)
20	47.37	1.33 (m), 1.27 (m)
21	68.98	3.94 (m)
22	46.29	1.33 (m), 1.25 (m)
23	68.55	4.04 (m)
24	46.37	1.44 (ddd, 14.1, 10.1, 8.4), 1.33 (m)
25	67.75	3.91 (m)
26	46.78	1.50 (ddd, 14.1, 10.1, 8.4), 1.31 (m)
27	71.56	4.22 (m)
28	133.57	5.53 (ddd, 15.7, 4.8, 1.6)
29	132.35	5.64 (ddd, 15.7, 5.2, 1.2)
30	37.48	2.64 (m)
31	81.93	4.78 (dd, 10.0, 2.6)
32	30.67	1.92 (dqq, 10.0, 6.9, 6.8)
33	19.15	0.98 (d, 6.9)
34	11.43	1.06 (d, 6.9)
35	20.24	0.88 (d, 6.8)

^a Chemical shifts are given in ppm from TMS as internal standard.

^b CD₃OD as solvent.

 Multiplicity and coupling constants (J in Hz) are given in parentheses.

nonnin experiment for RR 557 (1)					
С	Н	С	Н		
C-4	3-H, 5-H	C-23	22-H, 24-H		
C-5	6-H	C-27	26-H		
C-7	6-H	C-28	29-H		
C-9	10-H	C-30	34-H		
C-10	9-H, 11-H	C-31	32-H, 33-H, 35-H		
C-12	13-H	C-32	30-H, 31-H, 33-H,		
C-14	15-H		35-H		
C-15	14-H, 16-H	C-33	35-H		
C-17	16-H, 18-H	C-34	30-H		
C-19	18-H, 20-H	C-35	33-H		

Table 2. Cross peaks observed in the 2D ¹³C-¹H HOHAHA experiment for RK-397 (1)^{a,b}.

Table 3. ¹H NMR data (400 MHz) for 10,11-*cis* RK-397 (2)^{a,b}.

No.	H ^{c,d}
2	5.94 (d, 15.1)
. 3	7.33 (dd, 15.1, 11.7)
4	6.46 (dd, 15.1, 11.7)
5	6.75 (dd, 15.1, 11.2)
6	6.41 (dd, 14.7, 11.2)
7	6.60 (dd, 14.7, 11.2)
8	6.37 (dd, 14.7, 11.2)
9	6.70 (dd, 14.7, 11.7)
10	6.25 (dd, 11.7, 11.7)
11	5.72 (ddd, 11.7, 11.7, 3.9)
12	2.83 (ddd, 12.7, 11.7, 2.0), 2.33 (m)
13	4.14 (m)
27	4.20 (m)
28	5.52 (m)
29	5.55 (m)
30	2.61 (m)
31	4.76 (dd, 9.7, 1.4)
32	1.95 (m)
33	0.97 (d, 6.8)
34	1.05 (d, 6.9)
35	0.86 (d, 6.9)

^a The ¹³C-¹H HOHAHA spectrum was recorded in the absorptive mode, using mixing time 60 mseconds, by 600 MHz spectroscopy.

^b Cross peaks of direct coupling $({}^{1}J_{CH})$ were eliminated.

Fig. 1. Long range C-H coupling observed for RK-397 (1) in the HMBC experiment.

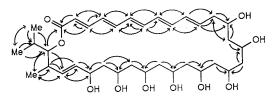
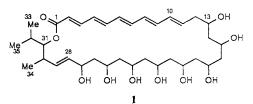
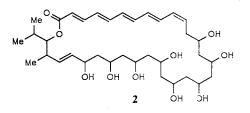
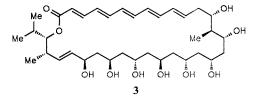





Fig. 2. Structures of RK-397 (1), 10,11-cis RK-397 (2) and mycoticin A (3).

^a Chemical shifts are given in ppm from TMS as internal standard.

^b CD₃OD as solvent.

^e Multiplicity and coupling constants (*J* in Hz) are given in parentheses.

^d Assignments of 14-H \sim 26-H were not determined. Signals of 15, 17, 19, 23-H, and 25-H were observed at 4.25 \sim 3.60 ppm and signals of 14, 16, 18, 20, 22, 24-H and 26-H were observed at 1.90 \sim 1.10 ppm.

RK-397 was labile to light and converted to some geometrical isomers. One of the isomers, compound 2, was partially purified and analyzed by NMR spectroscopy. Compound 2 and RK-397 (1) have the same molecular formulas, which were determined by HRFAB-MS. The ¹H NMR spectrum (Table 3) of 2 was similar to that of RK-397. but some difference was observed in the signals of the pentaene moiety. Sequential assignment of protons of 2 from the doublet signal of H-2 at 5.94 ppm was carried out by ¹H-¹H COSY. The vicinal coupling constant between H-10 and H-11 was $J = 11.7 \,\text{Hz}$, and the stereochemistry of this double bond was assigned to cis configuration. Other double bonds were assigned to trans stereochemistry from large coupling constants. The structure of compound 2 was thus determined to be the 10,11-cis isomer of RK-397. Recently, fulongmycin⁹⁾ which has the planar structure of 10,11-cis mycoticin was reported.

RK-397 (1) is a new member of the oxo polyene

macrolide antibiotics which include mycoticins A(3)and B²⁾, roxaticin³⁾, roflamycoin⁴⁾, dermostatins A and B⁵), fulongmycin⁹), flavofungins¹⁰), and surgumycin¹¹⁾. The configurations of the oxo polyene antibiotics, roxaticin³⁾ and mycoticins^{12~14)} were determined by X-ray analysis and synthesis, respectively. The planar structure of RK-397 corresponds to 14-demethyl-mycoticin A. The NMR data for RK-397 gave some information about the stereochemistry, but the determination of the stereochemistry for the polyol portion of RK-397 needs further experiments¹⁵⁾. The NMR data for vicinal coupling constants (Table 1) indicated that the all E conjugated pentaene is extended s-trans conformation and the conformation of terminal portion (C-28 \sim C-35) is the same as that of mycoticin A $(J_{29,30} = 5.4, J_{30,31} = 2.5, J_{31,32} = 10.0 \text{ Hz}$ for $3)^{15}$ and roxaticin³⁾.

Acknowledgments

We are grateful to Mr. Y. ESUMI and Ms. Y. ITO of RIKEN for HRFAB-MS measurements. We also thank Dr. J. UZAWA and Dr. M. URAMOTO of RIKEN for helpful discussions and encouragement.

References

- KOBINATA, K.; H. KOSHINO, T. KUDO, K. ISONO & H. OSADA: RK-397, a new oxo pentaene antibiotic. J. Antibiotics 46: 1616~1618, 1993
- WASSERMAN, H. H.; J. E. VAN VERTH, D. J. MCCAUSTLAND, I. J. BOROWITZ & B. KAMBER: The mycoticins, polyene macrolides from *Streptomyces ruber*. J. Am. Chem. Soc. 89: 1535~1536, 1967
- MAEHR, H.; R. YANG, L.-N. HONG, C.-M. LIU, M. H. HATADA & L. J. TORADO: Microbial products. 9. Roxaticin, a new oxo pentaene antibiotic. J. Org. Chem. 54: 3816~3819, 1989
- SCHLEGEL, R.; H. THRUM J. ZIELINSKI & E. BOROWSKI: The structure of roflamycoin, a new polyene macrolide antifungal antibiotic. J. Antibiotics 34: 122~123, 1981
- PANDEY, R. C.; K. L. RINEHART, Jr., D. S. MILLINGTON & M. B. SWAMI: Polyene antibiotics.
 VI. The structures of dermostatins A and B. J. Antibiotics 26: 475~477, 1973

- 6) NOGUCHI, H.; P. H. HARRISON, K. ARAI, T. T. NAKASHIMA, L. A. TRIMBLE & J. C. VEDERAS: Biosynthesis and full NMR assignment of fungichromin, a polyene antibiotic from *Streptomyces cellulosae*. J. Am. Chem. Soc. 110: 2938~2945, 1988
- BAX, A.; A. ASZALOS, Z. DINYA & K. SUDO: Structure elucidation of the antibiotic desertomycin through the use of new two-dimensional NMR techniques. J. Am. Chem. Soc. 108: 8056 ~ 8063, 1986
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple- bond concentivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986
- WANG, N.; X. ZHANG, Y. FU, W. ZHANG, J. SUN & M. HUANG: Fulongmycin, an antifungal antibiotic produced by *Stretomyces* strain B1829. CA. 115: 251753k, 1991
- BOGNAR, R.; S. MAKLEIT, K. ZSUPAN, B. O. BROWN, W. J. S. LOCKLEY, T. P. TOUBE & B. C. L. WEEDON: Flavofungin: A mixture of 13,15,17,19,21,23,25,27octahydroxy-31-isopropyl-14-methyl- and 13,15,-17,19,21,23,25,27-octahydroxy-14-methyl-31-sbutyl-hentriaconta-2,4,6,8,10,28-hexaen-31-olide. J. Chem. Soc. Perkin Trans I. 1972: 1848 ~ 1856, 1972
- SHENIN, Y. D.: Structure of surgumycin, a carbonylconjugated pentaenoic antibiotic. CA. 112: 194987b, 1990
- 12) SCHREIBER, S. L. & M. T. GOULET: Stereochemical studies of the skipped-polyol polyene macrolide class: Degradation and partial structure determination of mycoticin A and B. Tetrahedron Lett. 28: 6001~6004, 1987
- 13) SCHREIBER, S. L.; M. T. GOULET & T. SAMMAKIA: Stereochemical studies of the skipped-polyol polyene macrolide class: NMR studies of a tetraformyl derivative of mycoticin A and B. Tetrahedron Lett. 28: 6005~6008, 1987
- 14) SCHREIBER, S. L. & M. T. GOULET: Application of the two-directional chain synthesis strategy to the first stereochemical assignment of structure to the members of the skipped-polyol polyene macrolide class: mycoticin A and B. J. Am. Chem. Soc. 109: 8120~8122, 1987
- 15) SZILAGY, L. & P. SANDOR: Complete assignments of the ¹H and ¹³C NMR spectra of the macrolide antibiotic flavofungin; Intramolecular hydrogen bonding and conformation. Magn. Reson. Chem. 28: 963~972, 1990